4.3 Article

Magneto-hydrodynamic (MHD) micropump of nanofluids in a rotating microchannel under electrical double-layer effect

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954408920921697

关键词

MHD micropump; electrical double layer; nanofluid; flow reversal; Lorentz force

资金

  1. SERB (DST), India [ECR/2016/000702/ES]

向作者/读者索取更多资源

We investigate the electroosmosis of nanofluid in a rotating microfluidic channel under the influence of an applied magnetic field. We bring out the rotation-induced complex flow dynamics in the channel as modulated by the nanoparticle driven modifications in the viscous drag. In particular, we observe the flow reversal at the center of the channel, emerging from an intricate competition among different forcings under consideration. We identify the critical rotation Reynolds number, signifying the critical strength of channel rotation relative to the viscous resistance to the flow, for which the flow reversal at the channel center sets in. We demonstrate that the strength of the flow reversal for higher rotation Reynolds number decreases, since higher rotation Reynolds number breaks the interparticle interactions, leading to an enhancement in the effective viscosity of the fluid. Finally, we explain the consequential effects of colloidal suspensions of nanoparticle as realized through the particle concentration and agglomeration size on the alterations in the volume transport rates in the channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据