4.6 Article

Molecular diversity and genetic structure of Saccharum complex accessions

期刊

PLOS ONE
卷 15, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0233211

关键词

-

资金

  1. FINEP (Financiadora de Estudos e Projetos)
  2. FAPESP (Fundacao de Amparo a Pesquisa de Sao Paulo) [08/57908-6]
  3. CNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [574002/2008-1]
  4. CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) [001]
  5. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [08/57908-6] Funding Source: FAPESP

向作者/读者索取更多资源

Sugarcane is an important crop for food and energy security, providing sucrose and bioethanol from sugar content and bioelectricity from lignocellulosic bagasse. In order to evaluate the diversity and genetic structure of the Brazilian Panel of Sugarcane Genotypes (BPSG), a core collection composed by 254 accessions of the Saccharum complex, eight TRAP markers anchored in sucrose and lignin metabolism genes were evaluated. A total of 584 polymorphic fragments were identified and used to investigate the genetic structure of BPSG through analysis of molecular variance (AMOVA), principal components analysis (PCA), a Bayesian method using STRUCTURE software, genetic dissimilarity and phylogenetic tree. AMOVA showed a moderate genetic differentiation between ancestors and improved accessions, 0.14, and the molecular variance was higher within populations than among populations, with values of 86%, 95% and 97% when constrasting improved with ancestors, foreign with ancestors and improved with foreign, respectively. The PCA approach suggests clustering in according with evolutionary and Brazilian breeding sugarcane history, since improved accessions from older generations were positioned closer to ancestors than improved accessions from recent generations. This result was also confirmed by STRUCTURE analysis and phylogenetic tree. The Bayesian method was able to separate ancestors of the improved accessions while the phylogenetic tree showed clusters considering the family relatedness within three major clades; the first being composed mainly by ancestors and the other two mainly by improved accessions. This work can contribute to better management of the crosses considering functional regions of the sugarcane genome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据