4.4 Article

Analysis of a Single Solid Core Flat Fiber Plasmonic Refractive Index Sensor

期刊

PLASMONICS
卷 15, 期 5, 页码 1429-1437

出版社

SPRINGER
DOI: 10.1007/s11468-020-01154-2

关键词

Optical sensing; Photonic crystal fiber; Refractive index sensor; Surface plasmon; Finite element method

资金

  1. Frederick University under the EM LEADERS doctoral exchange program
  2. Indian Institute of Technology (ISM), Dhanbad, India

向作者/读者索取更多资源

In this article, a single solid core flat fiber (SSCFF) refractive index sensor based on surface plasmon resonance (SPR) is proposed and analyzed numerically using the finite element method (FEM). The proposed flat fiber consists of a single array of five circular holes. Among them the central hole is made of GeO2-doped silica which is forming the core. Other holes are filled with air and situated symmetrically on both sides of the central solid core. The upper flat surface of the fiber is coated with a thin plasmonic gold layer which is protected by an active titanium dioxide layers. Analyte is situated on top of these layers. The wavelength interrogation technique is applied to study the coupling characteristics between the core-guided mode and the surface plasmon mode as well as for the refractive index measurement. Numerical analysis results show that this sensor is able to detect high refractive index analytes from 1.49 to 1.54 with a good linear response. Additionally, the dependence of surface plasmonic resonance wavelength on analyte refractive index is studied. The maximum wavelength sensitivity of this sensor is found to be 4782 nm/RIU with a high resolution of 2.09 x 10(-5) RIU. The effects of different structural parameters on loss spectrum are studied in detail to optimize this SSCFF structure. In comparison to traditional PCF, this SSCFF structure is fabrication complexity free as well as a suitable candidate for developing portable devices and high refractive index analyte sensors, particularly chemical and protein sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据