4.7 Article

Comparative structural and functional analysis of phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 149, 期 -, 页码 266-276

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.02.012

关键词

Abiotic stress; Glutathione transferase; Multiple-herbicide resistance; Pesticide metabolism

资金

  1. Hellenic Foundation for Research and Innovation (HFRI)
  2. General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship grant [8904/22-09-2017]
  3. Bayer CropScience AG
  4. Horizon 2020 programme of the European Union [653706]

向作者/读者索取更多资源

Multiple-herbicide resistant (MHR) weeds are a global problem and a looming threat to weed control in crops. MHR weeds express a specific phi class glutathione transferase (MHR-GSTF) which seems to contribute to herbicide resistance. The present work aims to investigate the structure and catalytic properties of the MHR-GSTFs from different grass weeds and crops (Alopecurus myosuroides, Lolium rigidum, Hordeum vulgare, Triticum aestivum). Recombinant MHR-GSTFs were expressed in E. coli and purified by affinity chromatography. Kinetic analysis of substrate specificity using a range of thiol substrates and xenobiotic compounds suggested that all enzymes display a broad range of specificity and are capable of detoxifying major stress-induced toxic products. Notably, all tested enzymes exhibited high activity towards organic hydroperoxides. The crystal structure of MHR-GSTF from Alopecurus myosuroides (AmGSTF) was determined by molecular replacement at 1.33 angstrom resolution. The enzyme was resolved with bound glutathione sulfenic acid (GSOH) at the G-site and succinic acid at the H-site. The enzyme shows conserved structural features compared to other Phi class GSTs. However, some differences were observed at the C-terminal helix H9 that may affect substrate specificity. The structural and functional features of AmGSTF were compared with those of the homologue crop enzymes (HvGSTF and TaGSTF) and discussed in light of their contribution to the MHR mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据