4.7 Article

The DroughtBox: A new tool for phenotyping residual branch conductance and its temperature dependence during drought

期刊

PLANT CELL AND ENVIRONMENT
卷 43, 期 6, 页码 1584-1594

出版社

WILEY
DOI: 10.1111/pce.13750

关键词

drought; DroughtBox; heatwave; leaf cuticle; minimum conductance (g(min)); phase transition temperature (T-p); residual conductance (g(res))

资金

  1. Agence Nationale de la Recherche [ANR-18-CE20-0005]

向作者/读者索取更多资源

Xylem hydraulic failure is a major driver of tree death during drought. However, to better understand mortality risk in trees, especially during hot-drought events, more information is required on both rates of residual water-loss from small branches (g(res)) after stomatal closure, as well as the phase transition temperature (T-p), beyond which g(res) significantly increases. Here, we describe and test a novel low-cost tool, the DroughtBox, for phenotyping g(res) and T-p across species. The system consists of a programmable climatically controlled chamber in which branches dehydrate and changes in the mass recorded. Test measurements show that the DroughtBox maintains stable temperature and relative humidity across a range of set points, a prerequisite for getting accurate g(res) and T-p values. Among a study group of four conifer and one angiosperm species, we observed a range of g(res) (0.44-1.64 mmol H2O m(-2) s(-1)) and T-p (39.4-43.8 degrees C) values. Furthermore, the measured time to hydraulic failure varied between two conifers species and was shortened in both species following a heatwave event. The DroughtBox is a reliable and customizable tool for phenotyping g(res) and T-p, as well as for testing models of time to hydraulic failure that will improve our ability to assess climate change impacts on plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据