4.6 Article

Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 65, 期 18, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6560/ab95dd

关键词

magnetic particle imaging; magnetic particle; Landau-Lifshitz-Gilbert equation; Brownian dynamics

资金

  1. US National Science Foundation [CBET-1511113]

向作者/读者索取更多资源

The magnetic particle imaging (MPI) performance of collections of chains of magnetic nanoparticles with Neel and Brownian relaxation mechanisms was studied by carrying out simulations based on the Landau-Lifshitz-Gilbert equation and rotational Brownian dynamics, respectively. The effect of magnetic dipole-dipole interactions within chains on the time-domain average magnetic dipole moment and corresponding dynamic hysteresis loops, harmonic spectra, and point spread functions (PSFs) of the particle chains was evaluated. The results show that interactions within chains lead to 'square-like' dynamic hysteresis loops and enhanced MPI performance, compared to chains of non-interacting nanoparticles. For nanoparticles with the Brownian relaxation mechanism, subjected to a superimposed alternating and ramping magnetic field mimicking the magnetic field in MPI applications, we studied the dependence of x-space MPI performance of particle chains on parameters such as the amplitude of the alternating magnetic field, surface-to-surface separation between nanoparticles, solvent viscosity, and the number of nanoparticles in a chain. The results illustrate that magnetic dipole-dipole interactions within a chain contribute to enhanced MPI performance, and also suggest that there exist optimal values of the above parameters that lead to the best x-space MPI performance, i.e. maximum peak signal intensity and smallest full-width-at-half-maximum in PSFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据