4.8 Article

Breaking the Entanglement Barrier: Tensor Network Simulation of Quantum Transport

期刊

PHYSICAL REVIEW LETTERS
卷 124, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.124.137701

关键词

-

资金

  1. National Science Center, Poland [2016/23/D/ST3/00384]

向作者/读者索取更多资源

The recognition that large classes of quantum many-body systems have limited entanglement in the ground and low-lying excited states led to dramatic advances in their numerical simulation via so-called tensor networks. However, global dynamics elevates many particles into excited states, and can lead to macroscopic entanglement and the failure of tensor networks. Here, we show that for quantum transport-one of the most important cases of this failure-the fundamental issue is the canonical basis in which the scenario is cast: When particles flow through an interface, they scatter, generating a bit of entanglement between spatial regions with each event. The frequency basis naturally captures that-in the long-time limit and in the absence of inelastic scattering-particles tend to flow from a state with one frequency to a state of identical frequency. Recognizing this natural structure yields a striking-potentially exponential in some cases-increase in simulation efficiency, greatly extending the attainable spatial and time scales, and broadening the scope of tensor network simulation to hitherto inaccessible classes of nonequilibrium many-body problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据