4.8 Article

Energy Transfer from Large to Small Scales in Turbulence by Multiscale Nonlinear Strain and Vorticity Interactions

期刊

PHYSICAL REVIEW LETTERS
卷 124, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.124.104501

关键词

-

资金

  1. Advanced Simulation and Computing program of the U.S. Department of Energy's National Nuclear Security Administration [DE-NA0002373]

向作者/读者索取更多资源

An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipation due to the rapid generation of small-scale motions from large-scale excitation. The transfer of kinetic energy from large to small scales is commonly attributed to the stretching of vorticity by the strain rate, but strain self-amplification also plays a role. Previous treatments of this connection are phenomenological or inexact, or cannot distinguish the contribution of vorticity stretching from that of strain self-amplification. In this Letter, an exact relationship is derived which quantitatively establishes how intuitive multiscale mechanisms such as vorticity stretching and strain self-amplification together actuate the interscale transfer of energy in turbulence. Numerical evidence verifies this result and uses it to demonstrate that the contribution of strain self-amplification to energy transfer is higher than that of vorticity stretching, but not overwhelmingly so.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据