4.3 Article

Analysis of K- and L-band appearance in OJIPs in Antarctic lichens in low and high temperature

期刊

PHOTOSYNTHETICA
卷 58, 期 2, 页码 646-656

出版社

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.32615/ps.2019.180

关键词

conductivity; photosynthesis; photosystem II; thermal stability; transient

资金

  1. ECOPOLARIS project [CZ.02.1.01/0.0/0.0/16_013/0001708]
  2. ERDF project 'Plants as a tool for sustainable global development' [CZ.02.1.01/0.0/0.0/16_019/0000827]
  3. CzechPolar2 field infrastructure [LM2015078]
  4. Extreme Environments Life Laboratory (Department of Experimental Biology, Masaryk University, Brno, Czech Republic)

向作者/读者索取更多资源

In this study, we evaluated the effect of temperature on the fast chlorophyll fluorescence (ChlF) transient (OJIP) and OJIP-derived parameters in Antarctic lichens Xanthoria elegans, Usnea antarctica, and Dermatocarpon polyphyllizum. Samples were exposed to a range of temperatures (-5 to +45 degrees C) and measured after 15-min equilibration. High temperature (+45 degrees C) caused a decrease of ChlF, an increased J-step, and shortened time to reach peak ChlF (FP). Temperature below +5 degrees C caused the increase of ChlF and J-step. The K-band was identified in X. elegans (above +20 degrees C), U. antarctica (+35 degrees C), and D. polyphyllizum (+45 degrees C). L-band was well distinguishable in X. elegans (+45 degrees C). As indicated by the OJIP-derived parameters, high temperature inhibited photosystem II function. The inhibition was apparent as less effective energetic connectivity. The OJIP transients and auxiliary measurement of ChlF temperature curves suggested that X. elegans had the lowest termostability among the experimental species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据