4.4 Review

Chloroplast avoidance movement: a novel paradigm of ROS signalling

期刊

PHOTOSYNTHESIS RESEARCH
卷 144, 期 1, 页码 109-121

出版社

SPRINGER
DOI: 10.1007/s11120-020-00736-9

关键词

Actin filaments; Blue light; Calcium (Ca2+); Chloroplast avoidance movement; Reactive oxygen species (ROS)

资金

  1. University Grants Commission (UGC), New Delhi, India [25-1/2014-15(BSR)/220/2009/(BSR)]

向作者/读者索取更多资源

The damaging effects of supra-optimal irradiance on plants, often turning to be lethal, may be circumvented by chloroplast avoidance movement which realigns chloroplasts to the anticlinal surfaces of cells (parallel to the incident light), essentially minimizing photon absorption. In angiosperms and many other groups of plants, chloroplast avoidance movement has been identified to be a strong blue light (BL)-dependent process being mediated by actin filaments wherein phototropins are identified as the photoreceptor involved. Studies through the last few decades have identified key molecular mechanisms involving Chloroplast Unusual Positioning 1 (CHUP1) protein and specific chloroplast-actin (cp-actin) filaments. However, the signal transduction pathway from strong BL absorption down to directional re-localization of chloroplasts by actin filaments is complex and ambiguous. Being the immediate cellular products of high irradiance absorption and having properties of remodelling actin as well as phototropin, reactive oxygen species (ROS) deemed to be more able and prompt than any other signalling agent in mediating chloroplast avoidance movement. Although ROS are presently being identified as fundamental component for regulating different plant processes ranging from growth, development and immunity, its role in avoidance movement have hardly been explored in depth. However, few recent reports have demonstrated the direct stimulatory involvement of ROS, especially H2O2, in chloroplast avoidance movement with Ca2+ playing a pivotal role. With this perspective, the present review discusses the mechanisms of ROS-mediated chloroplast avoidance movement involving ROS-Ca2+-actin communication system and NADPH oxidase (NOX)-plasma membrane (PM) H+-ATPase positive feed-forward loop. A possible working model is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据