4.6 Review

The microbial exometabolome: ecological resource and architect of microbial communities

出版社

ROYAL SOC
DOI: 10.1098/rstb.2019.0250

关键词

facilitation; metabolite cross-feeding; microbiome; syntrophy; reciprocity

类别

资金

  1. NIH [R01GM095372]

向作者/读者索取更多资源

All microorganisms release many metabolites, collectively known as the exometabolome. The resultant multi-way cross-feeding of metabolites among microorganisms distributes resources, thereby increasing total biomass of the microbial community, and promotes the recruitment and persistence of phylogenetically and functionally diverse taxa in microbial communities. Metabolite transfer can also select for evolutionary diversification, yielding multiple closely related but functionally distinct strains. Depending on starting conditions, the evolved strains may be auxotrophs requiring metabolic outputs from producer cells or, alternatively, display loss of complementary reactions in metabolic pathways, with increased metabolic efficiency. Metabolite cross-feeding is widespread in many microbial communities associated with animals and plants, including the animal gut microbiome, and these metabolic interactions can yield products valuable to the host. However, metabolite exchange between pairs of intracellular microbial taxa that share the same host cell or organ can be very limited compared to pairs of free-living microorganisms, perhaps as a consequence of host controls over the metabolic function of intracellular microorganisms. Priorities for future research include the development of tools for improved quantification of metabolite exchange in complex communities and greater integration of the roles of metabolic cross-feeding and other ecological processes, including priority effects and antagonistic interactions, in shaping microbial communities. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据