4.3 Article

Cardiomyocyte Contractility and Autophagy in a Premature Senescence Model of Cardiac Aging

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2020/8141307

关键词

-

资金

  1. German Research Council (DFG) [GR 1240/22-1]
  2. Ministry of Science of the State of Brandenburg
  3. German Center for Cardiovascular Research (DZHK)
  4. German Ministry of Education and Research (BMBF)
  5. German Institute of Human Nutrition Potsdam-Rehbrucke (DIfE)

向作者/读者索取更多资源

Globally, cardiovascular diseases are the leading cause of death in the aging population. While the clinical pathology of the aging heart is thoroughly characterized, underlying molecular mechanisms are still insufficiently clarified. The aim of the present study was to establish an in vitro model system of cardiomyocyte premature senescence, culturing heart muscle cells derived from neonatal C57Bl/6J mice for 21 days. Premature senescence of neonatal cardiac myocytes was induced by prolonged culture time in an oxygen-rich postnatal environment. Age-related changes in cellular function were determined by senescence-associated beta-galactosidase activity, increasing presence of cell cycle regulators, such as p16, p53, and p21, accumulation of protein aggregates, and restricted proteolysis in terms of decreasing (macro-)autophagy. Furthermore, the culture system was functionally characterized for alterations in cell morphology and contractility. An increase in cellular size associated with induced expression of atrial natriuretic peptides demonstrated a stress-induced hypertrophic phenotype in neonatal cardiomyocytes. Using the recently developed analytical software tool Myocyter, we were able to show a spatiotemporal constraint in spontaneous contraction behavior during cultivation. Within the present study, the 21-day culture of neonatal cardiomyocytes was defined as a functional model system of premature cardiac senescence to study age-related changes in cardiomyocyte contractility and autophagy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据