4.6 Article

Efficient Asymmetric Synthesis of Ethyl (S)-4-Chloro-3-hydroxybutyrate Using Alcohol Dehydrogenase SmADH31 with High Tolerance of Substrate and Product in a Monophasic Aqueous System

期刊

ORGANIC PROCESS RESEARCH & DEVELOPMENT
卷 24, 期 6, 页码 1068-1076

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.oprd.0c00088

关键词

asymmetric synthesis; ethyl (S)-4-chloro-3-hydroxybutanoate; alcohol dehydrogenases; high substrate and product tolerance; monophasic aqueous system

资金

  1. National Natural Science Foundation of China [21776084, 21606062]
  2. Fundamental Research Funds for the Central Universities [22221818014]

向作者/读者索取更多资源

Bioreductions catalyzed by alcohol dehydrogenases (ADHs) play an important role in the synthesis of chiral alcohols. However, the synthesis of ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-CHBE], an important drug intermediate, has significant challenges concerning high substrate or product inhibition toward ADHs, which complicates its production. Herein, we evaluated a novel ADH, SmADH31, obtained from the Stenotrophomonas maltophilia genome, which can tolerate extremely high concentrations (6 M) of both substrate and product. The coexpression of SmADH31 and glucose dehydrogenase from Bacillus subtilis in Escherichia coli meant that as much as 660 g L-1 (4.0 M) ethyl 4-chloroacetoacetate was completely converted into (S)-CHBE in a monophasic aqueous system with a >99.9% ee value and a high space-time yield (2664 g L-1 d(-1)). Molecular dynamics simulation shed light on the high activity and stereoselectivity of SmADH31. Moreover, five other optically pure chiral alcohols were synthesized at high concentrations (100-462 g L-1) as a result of the broad substrate spectrum of SmADH31. All these compounds act as important drug intermediates, demonstrating the industrial potential of SmADH31-mediated bioreductions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据