4.6 Article

Motion-free TSOM using a deformable mirror

期刊

OPTICS EXPRESS
卷 28, 期 11, 页码 16352-16362

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.394939

关键词

-

类别

资金

  1. Ministry of Trade, Industry and Energy [10048720]

向作者/读者索取更多资源

Through-focus scanning optical microscopy (TSOM) is a model-based optical metrology method that involves the scanning of a target through the focus of an optical microscope. Unlike a conventional optical microscope that directly extracts the diffraction-limited optical information from a single in-focus image, the TSOM method extracts nanometer scale sensitive information by matching the target TSOM data/image to reference TSOM data/images that are either experimentally or computationally collected. Therefore, the sensitivity and accuracy of the TSOM method strongly depends on the similarities between the conditions in which the target and reference TSOM images are taken or simulated, especially the lateral instability during through-focus scanning. As a remedy to the lateral instability, we proposed the application of adaptive optics to the through-focus scanning operation and initially developed a closed-loop system with a tip/tilt mirror and a Shack-Hartmann sensor, with which we were able to keep the plane position within peak-to-valley (PV) 33 nm. We then further developed a motion-free TSOM tool reducing the instability down to practically zero by the replacement of the tip/tilt mirror with a deformable mirror that performs through-focus scanning by deforming its mirror surface. The motion-free TSOM tool with a x 50 (NA 0.55) objective lens could provide a scanning range of up to +/- 25 mu m with a minimum step of 25 nm at a maximum update rate of 4 kHz. The tool was demonstrated to have a recognition accuracy of < 4 nm for critical dimension (CD) values in the range of 60 similar to 120 nm with a reference TSOM image library generated by a Fourier modal method matching various observations conditions. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据