4.8 Review

Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes

期刊

CHEMICAL REVIEWS
卷 116, 期 5, 页码 2982-3028

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.5b00389

关键词

-

资金

  1. Swedish Energy Agency
  2. Permascand AB

向作者/读者索取更多资源

Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses, in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据