4.4 Article

A novel deep intronic COL2A1 mutation in a family with early-onset high myopia/ocular-only Stickler syndrome

期刊

OPHTHALMIC AND PHYSIOLOGICAL OPTICS
卷 40, 期 3, 页码 281-288

出版社

WILEY
DOI: 10.1111/opo.12682

关键词

early-onset high myopia; ocular-only Stickler syndrome; family; deep intronic variant

资金

  1. National Natural Science Foundation of China [81600768]
  2. Natural Science Foundation of Guangdong Province [2015A030310453]
  3. Fundamental Research Funds of the State Key Laboratory of Ophthalmology

向作者/读者索取更多资源

Purpose To identify the genetic defect causing early-onset high myopia (eoHM)/ocular-only Stickler syndrome (ocular-STL) in a large Chinese family. Methods Genomic DNA and clinical data from a four-generation family with eoHM/ocular-STL were collected. Whole-exome sequencing was performed on one affected member in initial screening. Linkage scan based on microsatellite markers was carried out initially from candidate loci associated with autosomal dominant eoHM and Stickler syndrome. Sanger sequencing was used to detect potential variants. The pathogenicity of candidate variants was evaluated using mini genes ex vivo. Results Eight patients and five unaffected members in the family participated in the study, in which the patients had high myopia with other variable ocular phenotypes but without extraocular abnormalities. Whole exome sequencing did not detect any potential pathogenic variant in all genes known to associate with the disease. The eoHM/ocular-STL in the family was mapped to markers around COL2A1 by candidate loci linkage scan, with a maximum lod score of 3.31 for D12S1590 at theta = 0. A novel deep intronic variant, c.86-50C > G in intron 1 of COL2A1, was detected by Sanger sequencing and co-segregated with eoHM/ocular-STL in the family. Ex vivo splicing test using mini genes confirmed that the variant created a new splicing acceptor 49 bp before the canonical splicing site of exon 2, resulted in addition of 49 bp fragment in the transcript (from c.86-49 to c.86-1) and premature termination. Conclusions Linkage study, bioinformatics prediction, and ex vivo transcript analysis suggest a novel deep intronic variant adjacent to 5-prime of exon 2 of COL2A1, affecting exon 2 splicing, as a potential cause of ocular-STL in a large family. To our knowledge, this is the first report of an intronic variant around exon 2 as a cause of ocular-STL while a series of variants in the coding region of exon 2, a dispensable alternative-splicing exon for extraocular tissues, in COL2A1 have been reported to cause Stickler syndrome-related ocular phenotype alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据