4.7 Article

Ketamine increases vmPFC activity: Effects of (R)- and (S)-stereoisomers and (2R, 6R)-hydroxynorketamine metabolite

期刊

NEUROPHARMACOLOGY
卷 166, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2020.107947

关键词

Ketamine; Hydroxynorketamine; Depression; Frontal cortex; NMDA

资金

  1. Douglas Kim GENIE Project [100833-AAV9]
  2. USA NIMH [R01 MH105910-04, RO1 MH093897-06A1]
  3. USA Brain and Behavior Research Foundation

向作者/读者索取更多资源

Ketamine, an NMDA receptor antagonist and fast acting antidepressant, produces a rapid burst of glutamate in the ventral medial prefrontal cortex (mPFC). Preclinical studies have demonstrated that pyramidal cell activity in the vmPFC is necessary for the rapid antidepressant response to ketamine in rodents. We sought to characterize the effects of ketamine and its stereoisomers (R and S), as well as a metabolite, (2R,6R)-hydroxynorketamine (HNK), on vmPFC activity using a genetically encoded calcium indicator (GCaMP6f). Ratiometric fiber photometry was utilized to monitor GCaMP6f fluorescence in pyramidal cells of mouse vmPFC prior to and immediately following administration of compounds. GCaMP6f signal was assessed to determine correspondance of activity between compounds. We observed dose dependent effects with (R,S)-ketamine (3-100 mg/kg), with the greatest effects on GCaMP6f activity at 30 mg/kg and lasting up to 20 min. (S)-ketamine (15 mg/kg), which has high affinity for the NMDA receptor channel produced similar effects to (R,S)-ketamine, but compounds with low NMDA receptor affinity, including (R)-ketamine (15 mg/kg) and (2R,6R)-HNK (30 mg/kg) had little or no effect on GCaMP6f activity. The initial response to administration of (R,S)-ketamine as well as (S)-ketamine is characterized by a brief period of robust GCaMP6f activation, consistent with increased activity of vmPFC pyramidal neurons. Because (2R,6R)-HNK and (R)-ketamine are reported to have antidepressant activity in rodent models the current results indicate that different initiating mechanisms lead to similar brain adaptive consequences that underlie the rapid antidepressant responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据