4.7 Article

A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling

期刊

NEUROPHARMACOLOGY
卷 167, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2019.107918

关键词

Biscoumarin; Oxygen-glucose deprivation; Middle cerebral artery occlusion; Nrf2/Keap1 signaling

资金

  1. Shaanxi Science and Technology Innovation Project [KTCL0303]
  2. Shaanxi Science and Technology Department of China

向作者/读者索取更多资源

Some phytochemical-derived synthetic compounds have been shown to improve neurological disorders, especially in ischemic stroke. In this study, we identified a novel biscoumarin compound, known as COM 3, which had substantial antioxidant effects in neurons. Next, we found that COM 3 occupies a critical binding site between the Nrf2 and Keap1 dipolymer, impairing the inhibitory effects of Keap1 on Nrf2, both of which play central roles in increasing endogenous antioxidant activity. We verified that COM 3 could increase the survival of neurons experiencing oxygen and glucose deprivation (OGD) from 51.1% to 77.2% when exposure to 2.5 and 10 mu g/mL of COM 3, respectively. In addition, the same concentrations of COM 3 could reduce brain infarct volumes by 33.8%to13.7%, respectively, while also reducing the neurobehavioral score from 3.3 to 1.4 on average in mice with a middle cerebral artery occlusion (MCAO). COM 3 reduced neuronal death from 36.5% to 13.9% and apoptosis from 35.1% to 18.2%. In addition, COM 3 could improve the neuronal mitochondrial energy metabolism after experiencing oxidative stress caused by OGD or MCAO. The present study suggests that COM 3 protects against OGD in neurons and MCAO in mice by interfering with the structure of Keap1 to activate the nuclear transcription of Nrf2, which balances endogenous redox activity and restores mitochondrial function. Hence, COM 3 might be a potential therapeutic agent for ischemic stroke in the clinic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据