4.6 Article

Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization

期刊

NEURAL COMPUTING & APPLICATIONS
卷 32, 期 17, 页码 13715-13746

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-020-04779-w

关键词

Crow search algorithm; Orthogonal; Opposition; Multi-objective optimization; Metaheuristic; Engineering designs; MOORA

向作者/读者索取更多资源

Many engineering optimization problems are typically multi-objective in their natures and multidisciplinary with a large number of decision variables. Furthermore, Pareto dominance loses its effectiveness in such situations. Thus, developing a robust optimization algorithm undoubtedly becomes a true challenge. This paper proposes a multi-objective orthogonal opposition-based crow search algorithm (M2O-CSA) for solving large-scale multi-objective optimization problems (LSMOPs). In the M2O-CSA, a multi-orthogonal opposition strategy is employed to mitigate the conflicts among the convergence and distribution of solutions. First, two individuals are randomly chosen to undergo the crossover stage and then orthogonal array is presented to obtain nine individuals. Then individuals are used in the opposition stage to improve the diversity of solutions. The effectiveness of the proposed M2O-CSA is investigated by implementing it on different dimensions of multi-objective optimization problems (MOPs). The Pareto front solutions of these MOPs have various characteristics such as convex, non-convex and discrete. It is also applied to solve multi-objective design applications with distinctive features such as four bar truss (FBT) design, welded beam (WB) deign, disk brake (DB) design, and speed reduced (SR) design, where they involve different characteristics. In this context, a new decision making tool based on multi-objective optimization on the basis of ratio analysis (MOORA) technique is employed to help the designer for extracting the operating point as the best compromise or satisfactory solution to execute the candidate engineering design. Simulation results affirm that the proposed M2O-CSA works efficiently and effectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据