4.7 Review

The regulation and functions of DNA and RNA G-quadruplexes

期刊

NATURE REVIEWS MOLECULAR CELL BIOLOGY
卷 21, 期 8, 页码 459-474

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41580-020-0236-x

关键词

-

资金

  1. Cancer Research UK [C14303/A17197, C9681/A18618]
  2. EU H2020 Framework Programme funding (H2020-MSCA-IF-2016) [747297-QAPs]

向作者/读者索取更多资源

G-quadruplexes (G4s) are structures formed in guanine-rich DNA or RNA, which are linked to transcription, translation, chromatin biology, genome instability and RNA modifications. Recent studies connect G4 formation with cancer-cell lethality and indicate that G4s could be therapeutic targets. DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据