4.8 Article

Probing molecular environment through photoemission delays

期刊

NATURE PHYSICS
卷 16, 期 7, 页码 778-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-020-0887-8

关键词

-

资金

  1. King Saud University [RSP-2019/152]
  2. MULTIPLY fellowship program under the Marie Skodowska-Curie COFUND Action
  3. Alexander von Humboldt Foundation
  4. Max Planck Society via the IMPRS-APS
  5. Max Planck Society [KL-1439/11-1]
  6. German Research Foundation [KL-1439/11-1]

向作者/读者索取更多资源

Attosecond chronoscopy has revealed small but measurable delays in photoionization, characterized by the ejection of an electron on absorption of a single photon. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport. However, extending this approach to molecules presents challenges, such as identifying the correct ionization channels and the effect of the anisotropic molecular landscape on the measured delays. Here, we measure ionization delays from ethyl iodide around a giant dipole resonance. By using the theoretical value for the iodine atom as a reference, we disentangle the contribution from the functional ethyl group, which is responsible for the characteristic chemical reactivity of a molecule. We find a substantial additional delay caused by the presence of a functional group, which encodes the effect of the molecular potential on the departing electron. Such information is inaccessible to the conventional approach of measuring photoionization cross-sections. The results establish ionization-delay measurements as a valuable tool in investigating the electronic properties of molecules. Ionization delays from ethyl iodide around a giant dipole resonance are measured by attosecond streaking spectroscopy. Using theoretical knowledge of the iodine atom as a reference, the contribution of the functional ethyl group can be obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据