4.6 Article

Novel g-C3N4/Fe-ZnO/RGO nanocomposites with boosting visible light photocatalytic activity for MB, Cr (VI), and outstanding catalytic activity toward para-nitrophenol reduction

期刊

NANOTECHNOLOGY
卷 31, 期 32, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/ab8c07

关键词

z-scheme heterojunction; synergistic mechanism; photocatalytic reduction and oxidation; charge transfer; visible light catalyst

资金

  1. Department of Science and Technology (DST), Government of India [PDF/2016/001471, PDF/2016/2797]

向作者/读者索取更多资源

A novel g-C3N4/Fe-ZnO/RGO nanocomposite has been synthesized using the facile solvothermal method to boost the catalytic efficiency of ZnO. The structure and morphology of nanocomposites were examined by a wide range of characterization methods. The obtained g-C3N4/Fe-ZnO/RGO nanocomposite (Z-scheme heterostructure) exhibits improved photocatalytic activity toward the photodegradation of MB, Cr (VI) under visible-light irradiation and 4-nitrophenol reduction. The enhancement in activity of nanocomposite is ascribed to a unique heterostructure system, which facilitates excellent transport and separation of the photogenerated charge carrier, resulting in prolonged lifetime leading to continuous generation of reactive species. Moreover, the synergistic effect on the interface of ZnO and g-C3N4 and the introduction of reduced graphene oxide (RGO) serve as a booster for charge separation at the Z-scheme, which ultimately speeds up the degradation of pollutants. The present study provides a novel and facile approach for establishing an efficient nanocomposite for environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据