4.7 Article

Stellar migrations and metal flows - Chemical evolution of the thin disc of a simulated Milky Way analogous galaxy

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa1451

关键词

stars: abundances; ISM: abundances; galaxies: abundances; galaxies: evolution

资金

  1. Center for Cosmology and AstroParticle Physics at The Ohio State University
  2. United Kingdom Science and Technology Facility Council (STFC) [ST/R000905/1]
  3. BIS National E-infrastructure capital grant [ST/K00042X/1]
  4. DiRAC Operations grant [ST/K003267/1]
  5. STFC capital grant [ST/K00087X/1]
  6. Durham University
  7. Alfred P. Sloan Foundation
  8. U.S. Department of Energy Office of Science
  9. Brazilian Participation Group
  10. Carnegie Institution for Science
  11. Carnegie Mellon University
  12. Chilean Participation Group
  13. French Participation Group
  14. Harvard-Smithsonian Center for Astrophysics
  15. Instituto de Astrofisica de Canarias
  16. The Johns Hopkins University
  17. Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo
  18. Korean Participation Group
  19. Lawrence Berkeley National Laboratory
  20. Leibniz Institut fur Astrophysik Potsdam (AIP)
  21. Max-Planck-Institut fur Astronomie (MPIA Heidelberg)
  22. Max-Planck-Institut fur Astrophysik (MPA Garching)
  23. Max-Planck-Institut fur Extraterrestrische Physik (MPE)
  24. National Astronomical Observatories of China
  25. New Mexico State University
  26. New York University
  27. University of Notre Dame
  28. Observatario Nacional/MCTI
  29. Ohio State University
  30. Pennsylvania State University
  31. Shanghai Astronomical Observatory
  32. United Kingdom Participation Group
  33. Universidad Nacional Autonoma de Mexico
  34. University of Arizona
  35. University of Colorado Boulder
  36. University of Oxford
  37. University of Portsmouth
  38. University of Utah
  39. University of Virginia
  40. University of Washington
  41. University of Wisconsin
  42. Vanderbilt University
  43. Yale University
  44. STFC [ST/P002447/1, ST/P000673/1, ST/J005673/1, ST/T001550/1, ST/L000636/1, ST/T001348/1, ST/T001569/1, ST/M000958/1, ST/R001014/1, ST/P003400/1, ST/V002384/1, ST/V002376/1, ST/M006948/1, ST/M007073/1, ST/S003916/1, ST/S003762/1, ST/M007006/1, ST/M007065/1, ST/T001372/1, ST/R00689X/1, ST/K00333X/1, ST/K00042X/1, ST/R000832/1, ST/H008519/1, ST/V002635/1, ST/R000905/1, ST/T00049X/1, ST/M007618/1, ST/R001049/1] Funding Source: UKRI

向作者/读者索取更多资源

In order to understand the roles of metal flows in galaxy formation and evolution, we analyse our self-consistent cosmological chemodynamical simulation of a Milky Way like galaxy during its thin-disc phase. Our simulated galaxy disc qualitatively reproduces the variation of the dichotomy in [alpha/Fe]Fe/H] at different Galactocentric distances as derived by APOGEE-DR16, as well as the stellar age distribution in [alpha/Fe]-[Fe/H] from APOKASC-2. The disc grows from the inside out, with a radial gradient in the star-formation rate during the entire phase. Despite the radial dependence, the outflow-to-in fall ratio of metals in our simulated halo shows a time-independent profile scaling with the disc growth. The simulated disc undergoes two modes of gas inflow: (i) an infall of metal-poor and relatively low-[alpha/Fe] gas, and (ii) a radial flow where already chemically enriched gas moves inwards with an average velocity of similar to 0.7 km s(-1). Moreover, we find that stellar migrations mostly happen outwards, on typical time-scales of similar to 5 Gyr. Our predicted radial metallicity gradients agree with the observations from APOGEE-DR16, and the main effect of stellar migrations is to flatten the radial metallicity profiles by 0.05 dex/kpc in the slopes. We also show that the effect of migrations can appear more important in [alpha/Fe] than in the [Fe/H]-age relation of thin-disc stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据