4.6 Article

Antimicrobial Activity of Different Artemisia Essential Oil Formulations

期刊

MOLECULES
卷 25, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25102390

关键词

Artemisia essential oil; Pickering emulsion; oxidative stress; mature biofilm; antimicrobial activity

资金

  1. University of Pecs, Medical School grant [KA-2018-17]
  2. University of Pecs [EFOP 3.6.1-16-2016-00004]
  3. [GINOP-2.3.3-15-2016-0002]

向作者/读者索取更多资源

The extreme lipophilicity of essential oils (EOs) impedes the measurement of their biological actions in an aqueous environment. We formulated oil in water type Pickering Artemisiaannua EO nanoemulsions (AEP) with surface-modified Stober silica nanoparticles (20 nm) as the stabilizing agent. The antimicrobial activity of AEP and its effects on mature Candida biofilms were compared with those of Tween 80 stabilized emulsion (AET) and ethanolic solution (AEE) of the Artemisia EO. The antimicrobial activity was evaluated by using the minimum inhibitory concentrations (MIC90) and minimum effective concentrations (MEC10) of the compounds. On planktonic bacterial and fungal cells beside growth inhibition, colony formation (CFU/mL), metabolic activity, viability, intracellular ATP/total protein (ATP/TP), along with reactive oxygen species (ROS) were also studied. Artemisiaannua EO nanoemulsion (AEP) showed significantly higher antimicrobial activity than AET and AEE. Artemisiaannua EO nanoemulsions (AEP) generated superoxide anion and peroxides-related oxidative stress, which might be the underlying mode of action of the Artemisia EO. Unilamellar liposomes, as a cellular model, were used to examine the delivery efficacy of the EO of our tested formulations. We could demonstrate higher effectiveness of AEP in the EO components' donation compared to AET and AEE. Our data suggest the superiority of the AEP formulation against microbial infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据