4.6 Article

Alkalinity and Its Consequences for the Performance of Steel-Reinforced Geopolymer Materials

期刊

MOLECULES
卷 25, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25102359

关键词

geopolymer concrete; alkalinity; micro X-ray computer tomography (mu XCT); steel reinforcement corrosion

向作者/读者索取更多资源

This paper investigates the development of the alkalinity and its impact on carbon steel reinforcement embedded in alkali-activated fly ashes (AAFA) and alkali-activated fly ashes with ten percentage mass (wt%) of blast furnace slag (AAFAS)-based materials (geopolymer-GP). The pH analysis of eluates indicates a remarkable decrease of alkalinity in AAFA and AAFAS in the first hours of the geopolymerization process. Phenolphthalein solution and pore solution tests on concretes also show a sharp decrease of alkalinity with increased Ca content in the binder due to carbonation. Micro X-ray computer tomography (mu XCT) and electrochemical techniques indicate that the changed pH in the GP systems was accompanied by a decrease in the corrosion rates of steel reinforcement when compared to ordinary Portland cement (OPC) systems. In contrast to calcite and vaterite, which were detected in OPC and AAFAS after a carbonation process, only sodium carbonate natron was determined at lower levels in AAFA by X-ray diffraction (XRD).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据