4.6 Article

Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging

期刊

MOLECULES
卷 25, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25081838

关键词

vulnerable plaque; molecular imaging; PET imaging; nanobody; single-domain antibody; sub-millimetre resolution; AlF-radiolabelling

资金

  1. FWO project [G005815N, G0D8817N]
  2. Scientific Fund W. Gepts UZ Brussel
  3. EU H2020 MSCA ITN PET3D
  4. FWO [12R3119N]

向作者/读者索取更多资源

Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [F-18]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [F-18]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE(-/-) mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET /CT images and ex vivo data showed specific uptake of [F-18]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the beta-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据