4.6 Article

PbS Nanoparticles Prepared Using 1, 10-Phenanthroline Adduct of Lead(II) Bis(N-alkyl-N-phenyl dithiocarbamate) as Single Source Precursors

期刊

MOLECULES
卷 25, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25092097

关键词

dithiocarbamate; adducts; precursor; solvothermal; nanoparticles; morphology

资金

  1. North-West University, South Africa

向作者/读者索取更多资源

Dithiocarbamate complexes have remained prominent as single source precursors for the synthesis of clean metal sulfide nanoparticles. This study reports the synthesis of lead sulfide (PbS) nanoparticles using some novel complexes of 1, 10-phenanthroline lead(II) bis(N-alkyl-N-phenyl dithiocarbamate), represented as [Pb(L-1)(2)phen] (1) and [Pb(L-2)(2)phen] (2) (where L-1 = bis(N-ethyl-N-phenyldithiocarbamate; L-2 = bis(N-butyl-N-phenyldithiocarbamate); phen = 1, 10 phenanthroline) as a single source precursors. The complexes (1 and 2) were synthesized and characterized using various spectroscopic techniques and elemental analysis. The nanoparticles were synthesized via a solvothermal approach in oleylamine, used as a capping agent, and were given as PbS(1) and PbS(2) from [Pb(L-1)(2)phen] (1) and [Pb(L-2)(2)phen] (2), respectively, which were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and absorption spectroscopy. The diffraction patterns confirmed the formation of face-centered cubic phase PbS nanoparticles with a preferential growth orientation along the (200) plane. The TEM images showed that PbS(1) were of a spherical morphology, while the morphology of PbS(2) tended to produce short rods. This was due to variation in the functional group on the precursor compounds. This variation also resulted in the different band gap energies found such as 1.148 and 1.107 eV for PbS(1) and PbS(2), respectively, indicating a blue shift from the bulk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据