4.8 Article

Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells

期刊

MOLECULAR CELL
卷 78, 期 5, 页码 824-+

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2020.03.030

关键词

-

资金

  1. Stanford University
  2. Stanford ChEM-H
  3. University of California, Berkeley
  4. Howard Hughes Medical Institute
  5. National Institutes of Health [R01 CA200423, R21 DK112733]
  6. Defense Threat Reduction Agency [GRANT11631647]
  7. Francis Crick Institute from Cancer Research UK [FC001749]
  8. UK Medical Research Council [FC001749]
  9. Wellcome Trust [FC001749]
  10. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  11. DOE Office of Biological and Environmental Research
  12. National Institutes of Health, National Institute of General Medical Sciences [P41GM103393]
  13. ALS-ENABLE program - National Institutes of Health, National Institute of General Medical Sciences [DE-AC0205CH11231, P30 GM124169-01]
  14. Feodor Lynen Fellowship by the Alexander von Humboldt Foundation
  15. Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research
  16. National Institute of General Medical Sciences F32 Postdoctoral Fellowship [F32-GM126663-01]
  17. NWO Rubicon Postdoctoral Fellowship
  18. Stanford ChEM-H undergraduate scholarship
  19. National Institutes of Health Postdoctoral Fellowship [5F32CA224985]
  20. National Science Foundation Graduate Research Fellowship
  21. Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program
  22. Stanford Graduate Fellowship

向作者/读者索取更多资源

Studying posttranslationalmodifications classically relies on experimental strategies that oversimplify the complex biosyntheticmachineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway anduse engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptideN-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionalitymodification on cells, where the products of individual glycosyltransferases can be selectively characterizedormanipulated to understandglycan contributiontomajorphysiological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据