4.8 Article

Allopolyploid Speciation Accompanied by Gene Flow in a Tree Fern

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 37, 期 9, 页码 2487-2502

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msaa097

关键词

allopolyploidy; coalescent; Cyatheaceae; Gymnosphaera; hybridization speciation; RADseq

资金

  1. Strategic Priority Research Program of Chinese Academy of Sciences [XDB31000000]
  2. Southeast Asia Biodiversity Research Institute, Chinese Academy of Science [Y4ZK111B01]
  3. National Natural Science Foundation of China [31970218]

向作者/读者索取更多资源

Hybridization in plants may result in hybrid speciation or introgression and, thus, is now widely understood to be an important mechanism of species diversity on an evolutionary timescale. Hybridization is particularly common in ferns, as is polyploidy, which often results from hybrid crosses. Nevertheless, hybrid speciation as an evolutionary process in fern lineages remains poorly understood. Here, we employ flow cytometry, phylogeny, genomewide single nucleotide polymorphism data sets, and admixture and coalescent modeling to show that the scaly tree fern, Gymnosphaera metteniana is a naturally occurring allotetraploid species derived from hybridization between the diploids, G. denticulata and G. gigantea. Moreover, we detected ongoing gene flow between the hybrid species and its progenitors, and we found that G. gigantea and G. metteniana inhabit distinct niches, whereas climatic niches of G. denticulata and G. metteniana largely overlap. Taken together, these results suggest that either some degree of intrinsic genetic isolation between the hybrid species and its parental progenitors or ecological isolation over short distances may be playing an important role in the evolution of reproductive barriers. Historical climate change may have facilitated the origin of G. metteniana, with the timing of hybridization coinciding with a period of intensification of the East Asian monsoon during the Pliocene and Pleistocene periods in southern China. Our study of allotetraploid G. metteniana represents the first genomic-level documentation of hybrid speciation in scaly tree ferns and, thus, provides a new perspective on evolution in the lineage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据