4.3 Article

Biomimetic mineralization of nanocrystalline hydroxyapatites on aminated modified polylactic acid microspheres to develop a novel drug delivery system for alendronate

出版社

ELSEVIER
DOI: 10.1016/j.msec.2020.110655

关键词

Aminated polylactic acid; Nanofibrous microspheres; Hydroxyapatite; Biomimetic mineralization; Alendronate; Sustained release

资金

  1. National Natural Science Foundation of China [21805037]
  2. Fujian Provincial Natural Science Foundation [2016Y0025, 2017J01685]
  3. Fuzhou Science and Technology Project [2017-G-61, 2018-G-90]

向作者/读者索取更多资源

EPLA/nHAp composite microsphere, a novel drug delivery system potentially useful for the local delivery of alendronate (AL) to bone tissue was developed via the biomimetic mineralized deposition of nano-hydroxyapatite (nHAp) crystals on the surface of aminated modified polylactic acid (EPLA) microspheres. Scanning electron microscopy (SEM) observation showed that this system consisted of a polymer core with nanofiber network structure and inorganic coating composed of countless rod-like nanocrystalline particles, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) confirmed that these particles were nHAp crystals. An efficient AL-loading can be realized by facile impregnation-adsorption method under suitable conditions due to the high adsorption capacity of EPLA/nHAp composite microspheres. The drug loading efficiency of microspheres was detected by indirect ultraviolet spectrophotometry. It was found that the adsorption capacity of EPLA/nHAp composite microsphere towards AL was increased nearly 5-fold compared with that of bare EPLA microspheres owing to the strong interaction between alendronate and hydroxyapatite. Meanwhile, in vitro release study showed that AL-loaded EPLA/nHAp microspheres had a more sustained drug release than AL-loaded EPLA microspheres, all these results demonstrated that the as-prepared EPLA/nHAp composite microsphere is an efficient carrier for the delivery and sustained release of AL. Furthermore, an in vitro cell culture study revealed that these composite microspheres presented a good biocompatibility, showing great potential for the applications in the biomedical field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据