4.3 Article

Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.110571

关键词

Segmented poly(ester-urethane); Phosphorylcholine; Uniformly sized hard segments; Hemocompatibility; Tensile properties; Hydrolytic degradation

资金

  1. Shandong Provincial Natural Science Foundation, China [ZR2018MEM024]

向作者/读者索取更多资源

In order to improve the hemocompatibility of durable medical-grade polyurethane, a novel series of segmented poly(ester-urethane)s containing uniformly sized hard segments and phosphorylcholine (PC) groups on the side chains (SPU-PCs) was prepared by a facile method. The 2-methacryloyloxyethyl phosphorylcholine (MPC) was first reacted with alpha-thioglycerol by Michael addition to give a diol compound (MPC-diol), then the SPU-PCs with various PC content were prepared by a one-step chain extension of the mixture of MPC-diol and poly(epsilon-caprolactone) diol (PCL-diol) with aliphatic diurethane diisocyanates (HBH). The chemical structures of MPC-diol and SPU-PCs were confirmed by H-1 NMR and FT-IR, and the influences of PC content on the physicochemical properties of the SPU-PC films were studied. The introduction of PC groups enhanced the degree of micro-phase separation and improved the hydrolytic degradation of the films. Due to the denser hydrogen bonds formed in the uniformly sized hard segments, the films exhibited favorable tensile properties and a slow hydrolytic degradation rate. The results of water contact angle and XPS analysis indicated that the PC groups on the flexible side chains were concentrated on the surface after contact with water. The surface hemocompatibility of the films was evaluated by testing the protein adsorption and platelet adhesion, and the results revealed that the films surfaces could dramatically suppress the protein adsorption and platelet adhesion. The PC-containing polyurethane films possessed outstanding tensile properties, low degradation rate and good surface hemocompatibility, implying their great potential for use as long-term implant or blood-contacting devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据