4.6 Article

Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering

期刊

MATERIALS LETTERS
卷 264, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.matlet.2020.127326

关键词

Bone tissue engineering; Wood-based nanocellulose; Bone marrow mesenchymal stem cell; Cytocompatibility; Osteogenic differentiation

资金

  1. Research Council of Norway through the NORCEL project [228147]
  2. Trond Mohn Foundation (TMS) [BFS2018TMT10]

向作者/读者索取更多资源

Wood-based cellulose nanofibrils (CNFs) have, in addition to high specific surface area and high surface reactivity, ability to mimic nanostructured collagen in bone extracellular matrix. These properties make CNFs promising materials for bone tissue engineering (BTE). The CNFs degrade slowly in vivo. By blending and cross-linking gelatin (Gel) with CNFs, scaffolds were produced with tuned degradation rate and enhanced mechanical properties, more suitable for BTE applications. This in vitro study aimed to examine initial biological responses of human bone marrow mesenchymal stem cells to cross-linked Gel-CNF scaffolds. The scaffolds were fabricated from 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized CNF blended with Gel and cross-linked either by dehydrothermal treatment (DHT) or by a combination of hexamethylenediamine, genipin, and DHT. CNF scaffolds without cross-linking served as control. The produced scaffolds supported cell attachment, spreading, and osteogenic differentiation. However, the early cell attachment after 1 day and the expression of RUNX2 and SPP1 genes after 7 days were highest in the CNF scaffolds. The results suggest that cross-linked Gel-CNF are cytocompatible and holds potential for BTE applications. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据