4.7 Article

Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder

期刊

MATERIALS CHARACTERIZATION
卷 163, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2020.110278

关键词

Sn nanowire; Template electrodeposition; Microstructural characterization; Liquid bath melting; Lead-free solder; Melting point

资金

  1. National Key Research and Development Program of China [2017YFB0305700]
  2. National and Local Joint Engineering Laboratory of Advanced Electronic Packaging Materials (Shenzhen Development and Reform Commission) [2017-934]

向作者/读者索取更多资源

Electrodeposition of Sn within porous anodic aluminum oxide (AAO) template was used to synthesize Sn nanowires. Ag seed layer was sputtered upon AAO template firstly, then the Sn nanowires were electroplated upon the seed layer. After electrodeposition the Ag seed layer was removed and the AAO template was dissolved in order to obtain Sn nanowires finally. The diameter of Sn nanowires was about 200 nm, being consistent with the template pore size, while the length of nanowires had a linear growth rate of approximately 2.49 mu m/min. X-ray diffraction (XRD) and electron diffraction revealed that individual Sn nanowire was single crystal without preferential growth direction. The surface of the nanowire was wrapped by a thin SnO film (similar to 5 nm thick), as verified by transmission electron microscopy (TEM) observation and X-ray photoelectron spectrometer (XPS) analyses. The synthesized Sn nanowire powders had a dark brown color, which comes from the surface SnO layer. Through the differential scanning calorimetry (DSC) analysis, the melting point of Sn nanowires was determined as 231.73 degrees C, which is about 2.7% lower than the pure Sn particles. Fabrication of Sn nanosolders from Sn nanowires was tried using liquid bath melting method. It was found that Sn nanowires could convert into spheroidal nanosolder in liquid paraffin, which demonstrated a novel technology to fabricate nanosolders used for nanoscale interconnections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据