4.5 Article

Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates

期刊

MATERIALS AND MANUFACTURING PROCESSES
卷 35, 期 8, 页码 922-934

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2020.1745231

关键词

Laser; hybrid; welding; 316L(N); arc; stainless; solidification; ferrite; steel; microstructure

资金

  1. Department of Atomic Energy (DAE), India

向作者/读者索取更多资源

The effect of laser, Hybrid Laser-Tungsten inert gas (HLT) and Hybrid Laser-Metal inert gas (HLM) welding processes on the microstructure and mechanical properties of 5.6 mm thick 316L(N) stainless steel weld joints have been studied. The differences in weld metal microstructure and mechanical properties of the weld joints were evaluated and discussed. Weld bead geometry, ferrite number (FN), solidification mode, secondary dendrite arm spacing, hardness and tensile properties are compared. Laser weld joint showed narrow weld bead profile and a higher cooling rate than the hybrid laser arc weld joints and the weld metal manifested austenitic solidification mode. HLT weld displayed coarser weld metal microstructure due to higher heat input and austenitic ferritic solidification mode. HLM process possesses moderate heat input and cooling rate. The HLM weld metal exhibited ferritic austenitic solidification mode and 2.5 FN. The hardness of weld metal was higher in hybrid welding processes due to the higher ferrite content. HLM weld joint has higher yield strength, ultimate tensile strength and ductility compared to that of the other weld joints. HLM welding process also permits higher gap tolerance with filler metal addition and is recommended for welding of type 316L(N) stainless steel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据