4.7 Article

Tuning Compositional Drift in the Anionic Copolymerization of Styrene and Isoprene

期刊

MACROMOLECULES
卷 53, 期 10, 页码 3814-3821

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.0c00526

关键词

-

资金

  1. Auburn University
  2. Department of Chemical Engineering at Auburn University

向作者/读者索取更多资源

The properties of polymer materials are largely a result of the local and long-range order of polymer chains and systems of polymer chains. The ability to tune polymer chain architecture at the monomer and chain levels through controlled synthesis is therefore a powerful tool for manipulating its properties. Perhaps, the most widely used synthetic means to manipulate polymer properties is copolymerization, where more than one monomer is simultaneously polymerized. For living anionic copolymerization, the statistics of comonomer incorporation have long been known to be dependent on the solvent, temperature, and initiator. Here, we leverage solvent dependence in the anionic copolymerization of styrene and isoprene to tailor the compositional profile along the polymer chain. Copolymerization of styrene and isoprene is conducted with varied quantities of a polar modifier (triethylamine), and the conversion is monitored by in situ attenuated total reflectance Fourier transform infrared spectroscopy. Monomer conversion profiles are used to extract reactivity ratios as a metric for examining the change in the compositional drift as the solvent composition is varied. Increasing triethylamine content leads to a continuous flattening of the compositional profile from the extreme nearly pure diblock structure for synthesis in cyclohexane to an essentially flat compositional profile in 50/50 (vol./vol.) cyclohexane/triethylamine. The ability to continuously tune compositional drift, as shown here, between these two extremes is a powerful synthetic tool for preparing copolymers and block copolymers with tunable properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据