4.6 Article

Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres

期刊

CHEMICAL ENGINEERING SCIENCE
卷 155, 期 -, 页码 405-414

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2016.08.029

关键词

Encapsulation; Nanocrystal; Zein; 10-hydroxycamptothecin; Supercritical anti-solvent; Ultrasonic dialysis

资金

  1. National Natural Science Foundation of China [21276091, 21476086]
  2. Guangdong Natural Science Foundation [2014A030312007]

向作者/读者索取更多资源

Incorporation of drug nanocrystal (DNC) into a particulate carrier to form the DNC delivery system was conducted in this study, where 10-hydroxycamptothecin (HCPT) was selected as the model drug and zein was the carrier. The supercritical anti-solvent (SAS) process or the built-in ultrasonic dialysis process (BUDP) was applied to prepare HCPT NC-loaded zein microspheres (HCPT NC-Zein MS) at first respectively, but the results showed that the products obtained were unsatisfactory in their particle microstructures. Fortunately, by combining the SAS process with BUDP, i.e. the co-precipitation of HCPT and zein prepared using the SAS process was dispersed into ethanol-water as the dialysis solution for BUDP, the results showed that desirable HCPT NC-Zein MS were obtained. The formulations were evaluated quantitatively by an overall desirability function (DF), and the optimized HCPT NC- Zein MS was prepared according to the range analysis results of DF. Under the optimized conditions, HCPT NC-Zein MS with a mean particle size = 1.10 +/- 0.12 mu m, drug loading=5.98% and encapsulation efficiency=95.68% were obtained. The further characterizations of SEM, FT-IR, XRD and DSC demonstrated that HCPT NC was successfully incorporated into the interior of zein microspheres. The effects of the process parameters and the formation mechanism of HCPT NC-Zein MS were discussed in detail. Furthermore, it is presented that HCPT NC-Zein MS sustained HCPT release rate successfully, where about 50% HCPT was fast released in the first 20 h, then the release trend followed zero order kinetics and reached 70% in 82 h. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据