4.6 Article

Model-based analysis of water management at anode of alkaline direct methanol fuel cells

期刊

CHEMICAL ENGINEERING SCIENCE
卷 143, 期 -, 页码 181-193

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2015.12.006

关键词

ADMFC; Fuel cell system; Anion exchange membrane; Alkaline fuel cell; Water management; Mathematical modelling

向作者/读者索取更多资源

Alkaline direct methanol fuel cells (ADMFCs) produce water at the aqueous fed anode. This complicates water management at anode which is analysed in this study by modelling three extreme case scenarios assuming different conditions for water transport or removal. All scenarios include recycling of methanol solution at anode outlet to achieve high methanol efficiencies. One scenario reveals that high operation times and high methanol efficiencies necessitate active stabilisation of anodic water level since both water accumulation and depletion can take place depending on operation conditions. Another scenario shows that water level can be stabilised by adjusting cathodic evaporation and the corresponding water removal from the system. The results indicate that feeding cathode with water-saturated gas is detrimental for stabilising water level. The last scenario suggests the addition of a gas flow to anodic outlet to remove excess water for water level stabilisation. Minimization of additional methanol loss requires to reach high humidities by evaporation. The present paper reveals the impact of processes occurring in ADMFCs on anodic water management and indicates the necessity to quantify water transport through membrane. Knowledge of the influence of operation conditions on water level in the anodic loop are beneficial for design of ADMFC systems. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据