4.6 Article

Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces

期刊

LANGMUIR
卷 36, 期 20, 页码 5517-5523

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c00499

关键词

-

资金

  1. GIF, the German-Israeli Foundation for Scientific Research and Development [I-1346-401.10/2016]

向作者/读者索取更多资源

Wetting transition on superhydrophobic surfaces is commonly described as an abrupt jump between two stable states-either from Cassie to Wenzel for nonhierarchical surfaces or from Cassie to nano-Cassie on hierarchical surfaces. We here experimentally study the electrowetting of hierarchical superhydrophobic surfaces composed of multiple length scales by imaging the light reflections from the gas-liquid interface. We present the existence of a continuous set of intermediate states of wetting through which the gas-liquid interface transitions under a continuously increasing external forcing. This transition is partially reversible and is limited only by localized Cassie to Wenzel transitions at nanodefects in the structure. In addition, we show that even a surface containing many localized wetted regions can still exhibit extremely low contact angle hysteresis, thus remaining useful for many heat transfer and self-cleaning applications. Expanding the classical definition of the Cassie state in the context of hierarchical surfaces, from a single state to a continuum of metastable states ranging from the centimeter to the nanometer scale, is important for a better description of the slip properties of superhydrophobic surfaces and provides new considerations for their effective design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据