4.6 Article

Ultrafast Dynamics at the Lipid-Water Interface: DMSO Modulates H-Bond Lifetimes

期刊

LANGMUIR
卷 36, 期 23, 页码 6502-6511

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c00870

关键词

-

资金

  1. National Science Foundation [CHE-1847199]
  2. Welch Foundation [F-1891]

向作者/读者索取更多资源

Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid- water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations. Ester carbonyl absorption spectra show that DMSO dehydrates the interface, and simulations show that the area per lipid is decreased. Ultrafast 2D IR spectra measure the time scales of frequency fluctuations at the ester carbonyl positions located precisely between the hydrophobic and hydrophilic regions of the membrane. 2D IR measurements show that low DMSO concentrations (<10 mol %) induce similar to 40% faster H-bond dynamics compared with pure water, whereas increased concentrations (>10-20 mol %) once again slow down the dynamics. This slow-fast-slow trend is described in terms of two different solvation regimes. Below 10 mol %, DMSO weakens the interfacial H bond, leading to faster bulk-like dynamics, whereas above 10 mol %, water molecules become relatively immobilized as the H-bond networks becoming disrupted by the H-bond donor/acceptor imbalance at the interface. These studies are an important step toward characterizing the environments around lipid membranes, which are essential to numerous biological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据