4.7 Article

Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 144, 期 4, 页码 1467-1481

出版社

SPRINGER
DOI: 10.1007/s10973-020-09595-x

关键词

EMD; NEMD; Thermal conductivity of nanofluids; Kapitza resistance; Nanolayer; Shape of nanoparticles; Percolation networks

资金

  1. Shiraz University for the computational resources

向作者/读者索取更多资源

This study estimates the upper and lower physical limits for the thermal conductivity of nanofluids by considering the effects of different mechanisms. It also introduces the interference of nanolayer and thermal boundary resistance on the thermal conductivity of nanofluids as a new phenomenon.
Both equilibrium and nonequilibrium molecular dynamics (EMD and NEMD, respectively) methods have been used to predict the thermal conductivity of nanofluids. However, there are considerable discrepancies among the results of these two methods. In this study, by estimating the effects of different mechanisms including the Brownian motion of nanoparticles, the micro-convection in the base fluid, the nanolayers around the nanoparticles, and the thermal boundary resistance at the surface of nanoparticle, we determine upper and lower physical limits for the thermal conductivity of a nanofluid with spherical nanoparticles. The prediction of the NEMD simulations is in the acceptable range, while the result of the EMD simulations is higher than the upper bound. Since the prediction of the EMD method is not physically justifiable, we conclude the inadequacy of the traditional EMD method in calculating the thermal conductivity of nanofluids. Consequently, we recommend the researchers to use a modified version of the EMD method or the NEMD method for new studies in this field. We also apply the NEMD method to investigate the effects of the shape of nanoparticles and the formation of percolation networks in enhancing the thermal conductivity of nanofluids. The interference of the effects of nanolayer and thermal boundary resistance on the thermal conductivity of nanofluids is a new phenomenon we introduce in this study. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据