4.6 Article

Characterizing the viscoelasticity of extra- and intra-parenchymal lung bronchi

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2020.103824

关键词

Lung; Viscoelasticity; Mechanics; Rheology; Airways; Microstructure

资金

  1. Dean's Distinguished Fellowship Award
  2. Molecular and Translational Medicine Award from School of Medicine

向作者/读者索取更多资源

Pulmonary disease is known to cause remodeling of tissue structure, resulting in altered viscoelastic properties; yet the foundation for understanding this phenomenon is still nascent and will enable scientific insights regarding lung functionality. In order to characterize the viscoelastic response of pulmonary airways, uniaxial tensile experiments are conducted on porcine extra- and intra-parenchymal bronchial regions, measuring both axially and circumferentially oriented tissue. Anisotropic and heterogeneous effects on preconditioning and hysteresis are substantial, linking to energy dissipation expectancies. Stress relaxation is rheologically modeled using several classical configurations of discrete spring and dashpot elements; among them, Standard Linear Solid (SLS) and Maxwell-Weichart exhibit better fit performance. Enhanced fractional order derivative SLS (FSLS) model is also evaluated through use of a hybrid spring-pot of order a. FSLS outperforms the conventional models, demonstrating superior representation of the stress-relaxation curve's initial value and non-linear asymptotic decent. FSLS parameters exhibit notable orientation- and region-specific values, trending with observed tissue structural constituents, such as glycosaminoglycan and collagen. To the best of our knowledge, this work is the first to characterize proximal and distal bronchial energy efficiency and contextualize tissue biochemical composition in view of experimental measures and viscoelastic trends. Results provide a foundation for future investigations, particularly for understanding the role of viscoelasticity in diseased states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据