4.1 Article

Biotransformation of hop derived compounds by Brettanomyces yeast strains

期刊

JOURNAL OF THE INSTITUTE OF BREWING
卷 126, 期 3, 页码 280-288

出版社

INST BREWING
DOI: 10.1002/jib.610

关键词

Brettanomyces bruxellensis; beta-glucosidase; monoterpene alcohols; nitrate assimilation; beer

向作者/读者索取更多资源

Several hop derived compounds in wort are known to be converted by yeast during fermentation, influencing the overall perception of the beer. A deeper understanding of such metabolic processes during fermentation is needed to achieve better control of the outcome. Here, the interaction between hop derived compounds and the yeast genera Brettanomyces was studied. Several Brettanomyces strains with different genomic backgrounds were selected, focusing on two traits: beta-glucosidase activity and nitrate assimilation. The role of three beta-glucosidases present in Brettanomyces bruxellensis and Brettanomyces anomalus and their impact on the final monoterpene alcohol profile was analysed. The beta-glucosidase activity was highly strain dependent, with B. anomalus CRL-49 exhibiting the highest conversion. Such activity could not be related to the release of aglycones from hops during fermentation, as a substantial part of such activity was intracellular. Nevertheless, the reduction of geraniol to beta -citronellol was remarkably efficient for all Brettanomyces strains during fermentation, and it is suggested that two oxidoreductases BbHye2 and BbHye3 may have an influence. Moreover, the transfer of nitrate from hops to wort and its further assimilation by Brettanomyces species was analysed. The amount of nitrate in wort proved to be linearly proportional to the contact time of the hops with the wort. The level of nitrate assimilation by yeast was shown to be dependent on the nitrate assimilation cluster (YNR, YNI, YNT). Hence, the desired yeast strains may be selected according to the genetic make-up. (c) 2020 The Authors. Journal of the Institute of Brewing published by John Wiley & Sons Ltd on behalf of The Institute of Brewing & Distilling

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据