4.7 Article

CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes

期刊

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
卷 40, 期 12, 页码 4084-4100

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jeurceramsoc.2020.04.058

关键词

Yttria-stabilized zirconia (YSZ); Thermal barrier coating (TBC); CMAS corrosion; Atmospheric plasma spray (APS); Suspension plasma spray (SPS)

向作者/读者索取更多资源

Degradation of yttria-stabilized zirconia (YSZ) layers by molten CaO-MgO-Al2O3-SiO2 (CMAS)-based deposits is an important failure mode of thermal barrier coating (TBC) systems in modern gas turbines. The present work aimed to understand how the chemical purity and microstructure of plasma-sprayed YSZ layers affect their response to CMAS corrosion. To this end, isothermal corrosion tests (1 h at 1250 degrees C) were performed on four different kinds of YSZ coatings: atmospheric plasma-sprayed (APS) layers obtained from standard- and high-purity feedstock powders, a dense - vertically cracked (DVC) layer, and a suspension plasma sprayed (SPS) one. Characterization of corroded and non-corroded samples by FEG-SEM, EBSD and micro-Raman spectroscopy techniques reveals that, whilst all YSZ samples suffered grain-boundary corrosion by molten CMAS, its extent could vary considerably. High chemical purity limits the extent of grain-boundary dissolution by molten CMAS, whereas high porosity and/or fine crystalline grain structure lead to more severe degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据