4.6 Article

Modeling the Performance of A Flow-Through Gas Diffusion Electrode for Electrochemical Reduction of CO or CO2

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ab987a

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]

向作者/读者索取更多资源

A flow-through gas diffusion electrode (GDE) consisting of agglomerate catalysts for CO or CO(2)reduction, gas channels for reactants, aqueous electrolytes for ionic transport, and metallic current collectors was simulated and evaluated using a numerical model. The geometric partial current densities and Faradaic Efficiencies (FE) for CH4, C(2)H(4)and H(2)generation in GDEs were calculated and compared to the behavior of analogous aqueous-based planar electrodes. The pH-dependent kinetics for CH(4)and C(2)H(4)generation were used to represent the intrinsic catalytic characteristics for the agglomerate catalyst. The modeling indicated that relative to planar electrodes for either CO reduction (COR) or CO(2)reduction (CO2R), substantial increases in electrochemical reduction rates and Faradaic efficiencies are expected when flow-through GDEs are used. The spatially resolved pH and reaction rates within the flow-through GDEs were also simulated for two different operating pHs, and the resulting transport losses were analyzed quantitatively. For CO(2)reduction, substantial loss of CO(2)via chemical reaction with the locally alkaline electrolyte was observed due to the increased pH in operating GDEs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据