4.4 Article

Influence of Joule heating and wall slip in electroosmotic flow via peristalsis: second law analysis

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40430-020-02351-0

关键词

Entropy; Joule heating; Electroosmosis; MHD Jeffery fluid; Slip velocity; Zeta potential

向作者/读者索取更多资源

Electrokinetic peristaltic slip transport in an asymmetric porous microchannel is studied to explore the entropy production in steady magnetohydrodynamic Jeffery fluid under simulation of Debye and long-wavelength approximations. The emerging two-dimensional bounded problem with electrokinetic body forces is solved numerically. Appropriate combination of heat and momentum equations with Jeffery model, after non-dimensionalization, generated controlling parameters in order to determine velocity, pressure gradient, temperature, entropy production and Bejan number. The trapping mechanism is also visualized by drawing streamlines against governing parameters. The zeta potential signifies the flow and heat response of the system. Former parameters like Brinkman number and Joule heating are compatibly liable for the increase in thermal irreversibilities. The outcomes of the present analysis are applicable in designing the thermofluidic micropumps and biomicrofluidic devices for separation processes and diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据