4.8 Article

Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ9-Desaturase

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 23, 页码 10412-10423

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c01786

关键词

-

资金

  1. Grant Agency of the Czech Republic [18-13093S, 20-06451Y]
  2. MSMT CR [LTAUSA19148]
  3. U.S. National Institutes of Health [NIH GM-40392]
  4. European Regional Development Fund, OP RDE [CZ.02.1.01/0.0/0.0/16_019/0000729]
  5. IT4I supercomputer center (MSMT CR) [LM2015070]

向作者/读者索取更多资源

( )A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe2) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe2 family of enzymes: soluble Delta(9) desaturase (Delta D-9), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-mu-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the proton-only activated pathway. Also, we ruled out that a intermediate (high-valent diamond-core bis-mu-oxo-[Fe-IV](2), unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Delta D-9 and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe2 enzymes and may inspire further work in NHFe2 biomimetic chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据