4.8 Article

Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 19, 页码 8818-8826

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c01811

关键词

-

资金

  1. Natural Science Foundation of China [21975243, 51761145046, 51672262]
  2. National Program for Support of Topnotch Young Professional

向作者/读者索取更多资源

Lithium metal batteries are vital devices for high-energy-density energy storage, but the Li metal anode is highly reactive with electrolyte and forms uncontrolled dendrite that can cause undesirable parasitic reactions and, thus, poor cycling stability and raise safety concerns. Despite remarkable progress to partially solve these issues, the Li metal still plates at the electrode/electrolyte interface where the parasitic reactions and dendrite formation invariably occur. Here, we demonstrate the inward-growth plating of Li atoms into a metal foil of thickness of tens of micrometers while avoiding surface deposition, which is driven by the reversible solid-solution-based alloy phase change. Lithiation of the solid-solution alloy phase allows the freshly generated Li atoms at the surface to sink into the metal foil, while the reversible alloy phase change is companied by the dealloying reaction during delithiation, which extracts Li atoms from inside of the metal foil. The yielded dendrite free Li anode produces an enhanced Coulombic efficiency of 99.5 +/- 0.2% with a reversible capacity of 1660 mA h g(-1) (3.3 mA h cm(-2)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据