4.8 Article

Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 17, 页码 7845-7857

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c00870

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science [NRF2016R1E1A1A01943379]
  2. AFSOR/AOARD [FA238617-1-4086]
  3. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the research unit FOR 1809
  4. National Research Foundation of Korea [NRF-2019R1G1A1099961]
  5. Basic Science Research Program through the National Research Foundation of Korea - Ministry of Education [NRF-2017R1A6A1A06015181]
  6. Graduate School of YONSEI University Research Scholarship Grants in 2019

向作者/读者索取更多资源

The singlet fission (SF) process is generally defined as the conversion of one singlet exciton (S-1) into two triplet excitons (2-T-1), which has the potential to overcome thermalization losses in the field of photovoltaic devices. Among the applicable compounds for SF-based photovoltaic devices, perylene bisimide (PBI) is one of the best candidates because of its electronic tunability and photostability. However, the strategy for efficient SF in PBIs remains ambiguous because of numerous competing relaxation pathways in PBI-based molecular materials. In this regard, for the first time, we observed the SF mechanism in PBI dimers by controlling the intrinsic factor (exciton coupling) and the external environment (solvent polarity and viscosity). Time-resolved spectroscopic measurements and quantum chemical simulations reveal that efficient SF occurs through the charge-transfer-assisted mechanism, entailing a large structural fluctuation. Our findings not only highlight the SF mechanism in PBI dimers but also suggest the factors responsible for an efficient SF process, which are important considerations in the design of molecular materials for photovoltaic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据