4.8 Article

An Improved PIII/PV=O-Catalyzed Reductive C-N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 14, 页码 6786-6799

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c01666

关键词

-

资金

  1. NIH NIGMS [GM114547]
  2. Bristol-Myers Squibb
  3. MIT

向作者/读者索取更多资源

Experimental, spectroscopic, and computational studies are reported that provide an evidence-based mechanistic description of an intermolecular reductive C-N coupling of nitroarenes and arylboronic acids catalyzed by a redox-active main-group catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide, i.e., 1 center dot [O]). The central observations include the following: (1) catalytic reduction of 1 center dot[O] to P-III phosphetane 1 is kinetically fast under conditions of catalysis; (2) phosphetane 1 represents the catalytic resting state as observed by P-31 NMR spectroscopy; (3) there are no long-lived nitroarene partial-reduction intermediates observable by N-15 NMR spectroscopy; (4) the reaction is sensitive to solvent dielectric, performing best in moderately polar solvents (viz. cyclopentylmethyl ether); and (5) the reaction is largely insensitive with respect to common hydrosilane reductants. On the basis of the foregoing studies, new modified catalytic conditions are described that expand the reaction scope and provide for mild temperatures (T >= 60 degrees C), low catalyst loadings (>= 2 mol%), and innocuous terminal reductants (polymethylhydrosiloxane). DFT calculations define a two-stage deoxygenation sequence for the reductive C-N coupling. The initial deoxygenation involves a rate-determining step that consists of a (3+1) cheletropic addition between the nitroarene substrate and phosphetane 1; energy decomposition techniques highlight the biphilic character of the phosphetane in this step. Although kinetically invisible, the second deoxygenation stage is implicated as the critical C-N product-forming event, in which a postulated oxazaphosphirane intermediate is diverted from arylnitrene dissociation toward heterolytic ring opening with the arylboronic acid; the resulting dipolar intermediate evolves by antiperiplanar 1,2-migration of the organoboron residue to nitrogen, resulting in displacement of 1 center dot[O] and formation of the target C-N coupling product upon in situ hydrolysis. The method thus described constitutes a mechanistically well-defined and operationally robust main-group complement to the current workhorse transition-metal-based methods for catalytic intermolecular C-N coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据