4.8 Article

Ultrafine Titanium Monoxide (TiO1+x) Nanorods for Enhanced Sonodynamic Therapy

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 14, 页码 6527-6537

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b10228

关键词

-

资金

  1. National Research Programs of China [2016YFA0201200]
  2. National Natural Science Foundation of China [51525203, 51761145041, 51572180]
  3. Collaborative Innovation Center of Suzhou Nano Science and Technology
  4. Jiangsu Natural Science Fund for Distinguished Young Scholars [BK20170063]
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
  6. State Key Laboratory of Radiation Medicine and Protection [GZK1201810]
  7. Soochow University
  8. [2019 SJKY19_2282]

向作者/读者索取更多资源

Ultrasound (US)-triggered sonodynamic therapy (SDT) that enables noninvasive treatment of large internal tumors has attracted widespread interest. For improvement in the therapeutic responses to SDT, more effective and stable sonosensitizers are still required. Herein, ultrafine titanium monoxide nanorods (TiO1+x NRs) with greatly improved sono-sensitization and Fenton-like catalytic activity were fabricated and used for enhanced SDT. TiO1+x NRs with an ultrafine rodlike structure were successfully prepared and then modified with polyethylene glycol (PEG). Compared to the conventional sonosensitizer, TiO2 nanoparticles, the PEG-TiO1+x NRs resulted in much more efficient US-induced generation of reactive oxygen species (ROS) because of the oxygen-deficient structure of TiO1+x NR, which predominantly serves as the charge trap to limit the recombination of US-triggered electron-hole pairs. Interestingly, PEG-TiO1+x NRs also exhibit horseradish-peroxidase-like nanozyme activity and can produce hydroxyl radicals (center dot OH) from endogenous H2O2 in the tumor to enable chemodynamic therapy (CDT). Because of their efficient passive retention in tumors post intravenous injection, PEG-TiO1+x NRs can be used as a sonosensitizer and CDT agent for highly effective tumor ablation under US treatment. In addition, no significant long-term toxicity of PEG-TiO1+x NRs was found for the treated mice. This work highlights a new type of titanium-based nanostructure with great performance for tumor SDT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据